Parametric least squares approximation using gamma bases

نویسندگان

  • Samel Çelebi
  • José Carlos Príncipe
چکیده

We study the problem of linear approximation of a signal using the parametric Gamma bases in L2 space. These bases have a time scale parameter which has the effect of modifying the relative angle between the signal and the projection space, thereby yielding an extra degree of freedom in the approximation. Gamma bases have a simple analog implementation which is a cascade of identical lowpass filters . We derive the normal equation for the optimum value of the time scale parameter and decouple it from that of the basis weights. Using statistical signal processing tools we further develop a numerical method for estimating the optimum time scale. EDICS NO: SP 2.3.1 Correspondence : Jose C. Principe Address : Computational Neuroengineering Laboratory CSE 447 University of Florida Gainesville FL32611 Phone : (904) 392-2662 Fax : (904) 392-0044 E-Mail : [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

MOX–Report No. 47/2013 Discrete least squares polynomial approximation with random evaluations - application to parametric and stochastic elliptic PDEs

Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that in the univariate case and for the uniform distribution, the least-squares method is optimal in expectation in [1] and in probability in [7]...

متن کامل

Dual Bases and Discrete Reproducing Kernels: A Unified Framework for RBF and MLS Approximation

Moving least squares (MLS) and radial basis function (RBF) methods play a central role in multivariate approximation theory. In this paper we provide a unified framework for both RBF and MLS approximation. This framework turns out to be a linearly constrained quadratic minimization problem. We show that RBF approximation can be considered as a special case of MLS approximation. This sheds new l...

متن کامل

Discrete least squares polynomial approximation with random evaluations – application to parametric and stochastic elliptic PDES

Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that in the univariate case, the least-squares method is quasi-optimal in expectation in [8] and in probability in [20], under suitable condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1995